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We report the synchronization of dynamics in a numerical model simulating electrochemical corrosion using
external chaotic forcing, periodic forcing, and finally forcing including a random component (random forcing).
For all three external forcings synchronization is achieved when the two response systems are at identical
parameter conditions exhibiting similar behavior. However when the two response systems are at unequal
parameter values exhibiting different dynamical behavior, synchronization is achieved only for forcing including
a random variable (random forcing). This ability of random perturbations to achieve generalized synchroni-
zation makes it a candidate worthy of consideration in problems involving synchronization of nonidentical
systems.

I. Introduction

Interest in synchronization of dynamics has increased because
of its possible relevance to secure communications. It started
out with efforts to synchronize identical systems,1-5 but lately
much emphasis has been placed on synchronization of non-
identical systems6,7 (generalized synchronization).
Recently it was realized that chaotic dynamics could be tamed

using external perturbations.8 In this article we extend this
already existing idea8 and propose using external (identical)
signals superimposed onto the dynamical equations of the two
response systems to achieve synchronization.9 The problem
considered here is different from the usual scenario where the
goal is to synchronize the dynamics of the drive and the response
system. In the case discussed here the drive system is merely
a generator of the chaotic, periodic, or random signals which
are superimposed on the dynamics of the two response systems.
Since there is an absence of a target (synchronized) state for
the two response systems, the final synchronized dynamics tend
to be different from both the initial unsynchronized dynamics
(of response systems) and the superimposed external dynamics
of the drive system. The article is organized as follows: In
the following section a brief introduction to the model system
chosen for superposition of external signals is provided. In
section III results from application of the periodic forcing are
discussed. Numerical results from the application of external
chaotic signals are presented in section IV. Finally, in section
V results from the application of random driving are presented
along with a brief comparison.

II. Model for Electrochemical Corrosion

The chemical system under consideration involves passiva-
tion of the reactive surface of a metal electrode in an elec-
trochemical cell. The chemical kinetics of the passivation model
includes the formation of two surface films, MOH (θ) and
MO (θO), where M represents the metal atom. It combines
elements from surface reaction models by Talbot and Oriani11

for MOH and by Sato12 for MO formation. The chemical

kinetics leads to the dimensionless equations13

whereY is the concentration of metal ions in the electrolyte,θ
andθO are the respective fraction of the metal surface covered
by each film,p, q, r, ands are parameters related to chemical
rate constants, andâ represents the non-Langmuir nature of
MOH film formation in the Talbot-Oriani model. The system
has been studied in some detail13 and is chaotic for parameter
values (p, q, r, s, â) ) (2.0× 10-4, 1.0× 10-3, 2.0× 10-5,
9.7× 10-5, 5.0). The discussion below deals with the behavior
of the system in the neighborhood of this point in parameter
space. In our numerical experiments two copies of this system
are created, and the appropriate driving (periodic, chaotic, or
random) is superimposed onto the evolution equation of one of
the three independent variables (Y,θ,θO). All the numerical
calculations for this model system were performed using the
fourth-order Runge-Kutta algorithm, with a step size ofh )
0.1.

III. Numerical Results for External Periodic Forcing

The external periodic signal is superimposed onto the
dynamics of the two identical chemical systems exhibiting
chaotic dynamics (eqs 1-3) at the parameter values (p, q, r, s,
â) (2.0× 10-4, 1.0× 10-3, 2.0× 10-5, 9.7× 10-5, 5.0). The
superimposed external periodic signal is chosen to be the
periodic time series of a third chemical system but operating at
a different region in parameter space ((p, q, r, s, â) ) (2.0×
10-4, 1.0× 10-3, 0.0, 0.0, 5.0)). At this point in parameter
space the system is two-dimensional and the dynamical response
is a limit cycle.13 Under the influence of the external periodic
signal (superimposed on the evolution equation) the altered

Ẏ) p(1- θ - θO) - qY (1)

θ̇ ) Y(1- θ - θO) - [exp(-âθ) + r]θ +
2sθO(1- θ - θO) (2)

θ̇O ) rθ - sθO(1- θ - θO) (3)
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equations of motions for the two response systems are

and

The external driving (Y(3)) superimposed onto the evolution
equations (eqs 4 and 7) of the two response system isγ(Y(1)-
Y(3)) (eq 4) andγ(Y(2) - Y(3)) (eq 7), respectively. Figure 1
shows the difference of theθ variable of the two response
systems ((θ(1) - θ(2)) converging to zero upon initiation of
the forcing at the 20 000th step of integration. The minimum
value ofγ able to achieve synchronization wasγ ) 0.004.
As the superimposed periodic driving to the two systems is

nonvanishing, the synchronized final dynamics are different
from the initially unsynchronized chaotic dynamics of the two
response systems. In fact the final synchronized state of the
two response systems is periodic because of the entrainment of
the dynamics under the influence of the periodic signal (via
superposition). Hence the two response (initially unsynchro-
nized) systems attain synchronization subsequent to the initiation
of the external periodic driving, and the final synchronized state
is periodic. Figure 2 shows the final periodic attractor (identical
for the two response systems) corresponding to synchronized
dynamics.
Synchronization is also achieved if the periodic time series

of theY variable are replaced with the periodic time series of
the other independent variable (θ).
Efforts to synchronize the two response systems operating

at different parameter conditions exhibiting different dynamical

behavior (generalized synchronization) were unsuccessful using
the external periodic driving.

IV. Numerical Results for External Chaotic Forcing

The two response systems (eqs 4-9) are at parameter values
(similar to previous section) such that they exhibit chaotic
dynamics. The superimposed external forcing is chosen to be
the chaotic time series from a third copy of the same chemical
system but operating at a different region in parameter space
((p, q, r, s, â) ) (2.0× 10-4, 1.0× 10-3, 2.0× 10-5, 9.685×
10-5, 5.0)) (differents). The external driving (Y(3)) superim-
posed onto the evolution equations (eq 4 and eq 7) of the two
response system isγ(Y(1) - Y(3)) (eq 4) andγ(Y(2) - Y(3))
(eq 7), respectively. Figure 3 shows the difference of theθ
variable for the two response systems (θ(1)- θ(2)) converging
to zero upon initiation of the driving (at the 20 000th step of
integration). The minimum value ofγ enable to attain syn-
chronization wasγ ) 0.003.
As the superimposed chaotic driving (Y(3)) to the two

response systems is nonvanishing, the synchronized final
dynamics (complex nonchaotic) are different from the initially
unsynchronized chaotic dynamics (for the response systems)
and from the chaotic dynamics of the drive system. The
nonchaotic nature of the final attractor (chaos suppression) is

Figure 1. Synchronization of dynamics for the two response systems
operating at identical parameter conditions using an external periodic
forcing (time series ofY(3) from the 2-D model). The value ofγ used
to achieve synchronization isγ ) 0.004.

Ẏ(1)) p(1- θ(1)- θO(1))- qY(1)+ γ(Y(1)- Y(3)) (4)

θ̇(1)) Y(1)(1- θ(1)- θO(1))- [exp(-âθ(1))+ r]θ(1)+
2sθO(1)(1- θ(1)- θO(1)) (5)

θ̇O(1)) rθ(1)- sθO(1)(1- θ(1)- θO(1)) (6)

Ẏ(2)) p(1- θ(2)- θO(2))- qY(2)+ γ(Y(2)- Y(3)) (7)

θ̇(2)) Y(2)(1- θ(2)- θO(2))- [exp(-âθ(2))+ r]θ(2)+
2sθO(2)(1- θ(2)- θO(2)) (8)

θ̇O(2)) rθ(2)- sθO(2)(1- θ(2)- θO(2)) (9)

Figure 2. Two-dimensional projection of the final periodic attractor
for the two response systems after the initiation of the synchronizing
periodic forcing (γ ) 0.004).

Figure 3. Synchronization of dynamics for the two response systems
operating at identical parameter conditions using an external chaotic
forcing (time series ofY(3)). The value ofγ used to achieve
synchronization isγ ) 0.003.
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verified by calculating the Lyapunov exponents. However, for
small values ofγ, the final synchronized attractor (identical for
both the response systems) retains some features of the initial
chaotic attractor corresponding to unsynchronized dynamics
(similar for both the response systems). Figure 4a shows the
two-dimensional projection of the chaotic attractor correspond-
ing to unsynchronized dynamics. Figure 4b displays the two-
dimensional nonchaotic attractor for the two response systems
(synchronized state) forγ ) 0.003. It preserves some initial
features of the unsynchronized chaotic attractor of Figure 4a.
However, as the value ofγ is increased, the final synchronized
dynamics depart from the initial unsynchronized state manifested
by the destruction of any correlation between the two (before
and after) attractors.
Similar to periodic forcing, synchronization was also achieved

when instead of using a chaotic time series ofY variable one
uses the chaotic time series of the other two independent
variables (θ, θO). Figure 5 shows the attainment of synchro-
nization using driving of the formγ(Y(1) - θO(3)) (added to
eq 4) andγ(Y(2) - θO(3)) (added to eq 7) superimposed to the
dynamics of the two response systems.
Finally similar to results for periodic forcing, efforts to

synchronize the two response systems operating at different
parameter conditions exhibiting different dynamical behavior
(generalized synchronization) were unsuccessful using the
external chaotic driving.

V. Numerical Results for External Random Forcing

The two response systems (eqs 4-9) again are exhibiting
chaotic dynamics (parameter similar to section III). The random
component (R) of the superimposed external forcing comes from
the random number generator of the machine (-1 < R < 1).
The external driving (superimposed every time step) onto the
evolution equations (eq 4 and eq 7) of the two response systems
is γ(Y(1) - R) (eq 4) andγ(Y(2) - R) (eq 7). Figure 6 shows
the difference of theθ variable for the two response systems
(θ(1) - θ(2)) converging to zero upon initiation of the driving
at the 20 000th step of integration. The minimum value ofγ
required to attain synchronization wasγ ) 0.0001, an order of
magnitude lower than that required for external periodic and
chaotic drivings. Similar to the previous two cases the final
attractor departs (in appearance) from the initial chaotic dynam-
ics proportional to the values ofγ used to achieve synchroniza-
tion. It was also verified that the final dynamics were different
from the superimposed random forcing so as to ensure that the
synchronized state was not completely dominated by the random
signal.
The added advantage of using the random driving was that

it is possible to achieve synchronization of the two response
systems even though they operate at different parameter

Figure 4. Two-dimensional projection of the attractor for the two
response systems before and after the initiation of the synchronizing
chaotic forcing (γ ) 0.003). (a) The two-dimensional projection of
the chaotic attractor corresponding to unsynchronized dynamics. (b)
The two-dimensional projection of the final nonchaotic attractor
corresponding to synchronized dynamics.

Figure 5. Synchronization of dynamics for the two response systems
operating at identical parameter conditions using an external chaotic
forcing (time series ofθO). The value ofγ used to achieve synchroniza-
tion is γ ) 0.003.

Figure 6. Synchronization of dynamics for the two response systems
operating at identical parameter conditions using an external random
forcing (Y- R). The value ofγ used to achieve synchronization isγ
) 0.0001.
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conditions and exhibit different dynamics (generalized synchro-
nization) Figure 7a shows the difference of theθ variable of
the two dissimilar response systems (θ(1) - θ(2)) converging
to zero upon initiation of the driving at the 20 000th step of
integration. Figure 7b exhibits the time series of the response
system (θ(2)) chosen to be at a parameter value where the
dynamics is a period one oscillation. It clearly manifests the
dramatic change of dynamics under the influence of the
synchronizing random forcing. Again it was verified that the
time series corresponding to the synchronized state was not
similar to the external random signal.
Moreover we were able to achieve synchronization if we

chose the random forcing superimposed onto the evolution
equations (eq 4 and eq 7) of the two response systems to be of
the formγR (eq 4) andγR (eq 7), respectively (pure random
driving). This is similar to adding a global random forcing to
a dynamical system. Figure 8 shows the difference of theθ
variable for the two response systems (θ(1)- θ(2)) converging
to zero upon initiation of the driving at the 20 000th step of
integration. The final synchronized state was again found to
be different from the unsynchronized dynamics and from the
external random signal.

Finally using the random driving of the formγR (eq 4) and
γR (eq 7) we were also able to synchronize the two response
systems operating at different parameter conditions, as shown
in Figure 9.
In conclusion results of successful synchronization are

presented using nonvanishing external periodic chaotic and
random forcings. However in comparison (of the three forc-
ings), the superiority of the random forcing is clearly evident,
as not only is it able to achieve synchronization for similar
response systems but it also is equally efficient in attaining
generalized synchronization. The results for the random driving
are independent of the manner of implementation of the forcing
(γ(Y- R) or γR) (in the sense that synchronization is achieved
for either driving) and are applicable to actual experimental
situations. Moreover the fact that forcing of the formγR is
successful indicates a possible relevance of using random
forcings to achieve synchronization of spatiotemporal systems.
Our initial results using random driving to synchronize spatio-
temporal systems are encouraging.
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Figure 7. Synchronization of dynamics for the two response systems
operating at different parameter conditions (system 1, (p, q, r, s, â)
(2.0× 10-4, 1.0× 10-3, 2.0× 10-5, 9.7× 10-5, 5.0)); system 2, ((p,
q, r, s, â) ) (2.0× 10-4, 1.0× 10-3, 0.0, 0.0, 5.0)) exhibiting different
qualitative behavior using an external random forcing (Y - R). The
value of γ used to achieve synchronization isγ ) 0.001. (a) The
difference of the variable converging to zero manifesting synchroniza-
tion. (b) The dramatic change in the dynamics of the response system
under the influence of the synchronizing forcing.

Figure 8. Synchronization of dynamics for the two response systems
operating at identical parameter conditions using an external random
forcing (R). The value ofγ used to achieve synchronization isγ )
0.0003.

Figure 9. Synchronization of dynamics for the two response systems
operating at different parameter conditions (system 1, (p, q, r, s, â)
(2.0× 10-4, 1.0× 10-3, 2.0× 10-5, 9.7× 10-5, 5.0)); system 2, ((p,
q, r, s, â) ) (2.0× 10-4, 1.0× 10-3, 0.0, 0.0, 5.0)) exhibiting different
qualitative behavior using an external random forcing (R). The value
of γ used to achieve synchronization isγ ) 0.0005.
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